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Abstract—Optical supermode dynamics are nowadays receiving
an ever increasing attention in mode-division multiplexing appli-
cations. In this paper, we systematically analyze and characterize
these modes in various structures based on coupled-mode theory.
In particular, we investigate the structure of supermodes in hon-
eycomb multi-ring arrangements of any size. In addition, we show
that higher order supermodes in coupled few-mode multi-core
waveguide arrays can be strongly affected by angle-dependent cou-
plings, leading to different modal field profiles. Analytical solutions
are provided for linear, rectangular, and ring arrays. Higher order
supermodes are observed for the first time in a coupled few-mode
three-core fiber system using the S2 imaging method.

Index Terms—Microstructure, optical waveguides, optical
fibers, optical fiber communication, space division multiplexing.

I. INTRODUCTION

SUPERMODES are eigenmodes of composite structures in-
volving coupled constituent elements, each of which also

supporting guided modes in isolation [1], [2]. As indicated in
a number of studies, such multi-core systems can be effec-
tively analyzed using coupled-mode theory (CMT)—which is
particularly effective when the coupling between neighboring
elements is relatively weak. Over the years, the properties of
supermodes in either linear [3] or ring arrays of coupled waveg-
uides have been analyzed using CMT methods [4]–[6]. Even
in the simplest possible configuration of two coupled channels,
supermodes play an important role given that their interference
is the one responsible for the energy exchange behavior in a
directional coupler.

Quite recently, supermodes have received renewed interest
within the context of mode-division multiplexing (MDM), a new
transmission method aimed at overcoming the capacity limit of
single-mode fiber communication systems. Since modes tend
to couple during long-distance fiber transmission, unravelling
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mode crosstalk using multiple-input-multiple-output (MIMO)
digital signal processing (DSP) is necessary for demultiplexing
MDM channels [7]. In the presence of modal group dispersion,
the computational load for MIMO DSP is proportional to the
modal group delay [8]. Interestingly, coupled multi-core fibers
can be designed to have reduced modal group delays and/or
larger effective areas in comparison with few-mode fibers (FMF)
[9]. In a recent experiment, the modal delay was also found to
depend sublinearly on transmission distance in the presence
of strong supermode coupling [10]. It is thus imperative to
study the properties of optical supermodes in a systematic man-
ner. Such study can help predict the mode behavior in various
coupled multi-core waveguides, including single-mode or few-
mode coupled multi-core fibers [10], [11], directional couplers
or the slow-tapering regime of the multi-core lanterns [12], [13].

In this paper, we analyze and characterize the modes of multi-
core structures that could be potentially useful in MDM systems.
For structures with single mode constituent elements, we in-
vestigate, in Section II, supermode arrangements in multi-ring
honeycomb lattices. Supermode structures with multimode con-
stituent elements were first introduced in [14]. In Section III,
we provide analytical description for higher-order supermodes
in such array configurations, including linear, ring and square
array lattices. Finally in Section IV, we present an experimental
observation of higher-order supermodes in a 3-core fiber array.

II. SUPERMODES IN MULTI-RING HONEYCOMB STRUCTURES

Honeycomb waveguide arrangements have been intensely in-
vestigated over the years [15]–[22]. Their close-packed geom-
etry makes them ideal for multi-core fiber application. In this
section, we develop a general methodology capable of analyz-
ing supermodes in multi-ring honeycomb waveguide lattices,
consisting of any number of layers. In addition to hexagonal
systems, this versatile technique can be used in other regu-
lar polygonal configurations. In brief, our approach is based
on separately formulating an eigenvalue problem for in-phase
supermodes and another for modes with orbital angular mo-
mentum. This can be achieved by appropriately grouping the
constituent waveguide elements based on their topology. Here,
this approach is explicitly demonstrated in honeycomb arrange-
ments involving 7, 19, and 37 sites.

We begin our analysis by assuming that in all cases, each
waveguide element is assumed to be cylindrical (of radius a)
and single-moded, i.e., it only supports the LP01 mode, with
a propagation constant β0 . The coupling coefficient κ between
waveguide channels can then be obtained using coupled-mode
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Fig. 1. (a) A 7-core hexagonal lattice. All single mode waveguide elements
interact with their nearest neighbors with a coupling strengthκ. (b) Real part of
the field distribution(∼ cos (Qn))associated with the DS11 supermode.

theory. If the distance between core centers, i.e., the core pitch
is D, this coupling strength is given by [23], [24]:

κ =
√

2Δ
a

U 2

V 3

K0 (WD/a)
K2

1 (W )
(2.1)

where Δ = (nc − ns) /nc is the waveguide index difference
and nc , ns are the core and cladding refractive indices, re-
spectively. V = k0anc

√
2Δ is the dimensionless V number in-

volved in the eigenvalue problem describing the fundamental
mode LP01 of the waveguide, e.g., UJ1 (U) /J0 (U) = WK1

(W ) /K0 (W ). In the last equation, U = a
(
k2

0n2
c − β2

)1/2
, W

= a
(
β2 − k2

0n2
s

)1/2
, where Kl (x) and Jl (x) are Bessel func-

tions of order l. The propagation constant β can be determined
from the eigenvalue problem by keeping in mind that V 2 =
U 2 + W 2 .

In this section, we will exemplify our method in the case of a
7-, 19-, and 37-core hexagonal lattice. Even though both the 7-
and 19-core systems have been previously analyzed using either
direct schemes or linear algebraic methods [18], [21], [22], here
we will still apply our methodology to these same geometries
for demonstration purposes.

A 7-core arrangement is shown in Fig. 1(a). In this multi-core
system the modal fields evolve according to:

i
dU0

dz
+ β0U0 + κ

6∑

n=1

Un = 0 (2.2a)

i
dUn

dz
+ β0Un + κU0 + κ (Un+1 + Un−1) = 0. (2.2b)

In Eq. (2.2) we only account for nearest neighbor interactions
in this hexagonal system. By introducing a gauge transformation
Un = un exp (iβ0z) and by adopting a dimensionless coordi-
nate Z = κz one arrives at

i
du0

dZ
+

6∑

n=1

un = 0 (2.3a)

i
dun

dZ
+ u0 + (un+1 + un−1) = 0. (2.3b)

In all cases, the modes can be re-expressed in terms of ac-
tual quantities and coordinates in a straightforward fashion. In
solving this problem, we look for discrete supermodes, hence-
forth denoted as DSlm , where the discrete index l represents

Fig. 2. (a) A 19-core hexagonal lattice. The waveguide elements are grouped
in four different families (a, b, c, d) indicated with different colors. (b) By
excluding the central core, the remaining elements of these families are in
addition grouped in each hexagonal sector in order to obtain supermodes having
angular momenta.

an orbital angular momentum and m is the root number of
the corresponding eigenvalue equation. To obtain the seven su-
permodes of the structure depicted in Fig. 1(a), we first seek
in-phase modes of the type DS0m that represent to some ex-
tent discrete analogues to the continuous LP0m modes in stan-
dard cylindrical waveguides [24, 25]. Under this assumption
and by exploiting the symmetry of this problem, one can iden-
tify two species, ua , ub where ua = u0 and ub = u1 = u2 =
. . . = u6 . From Eq. (2.3) we find that idua/dZ + 6ub = 0
and idub/dZ + 2ub + ua = 0. To obtain the dispersion rela-
tion of these in-phase modes we assume solutions of the type
ua = u0

aeiλZ and ub = u0
b e

iλZ that directly lead to an algebraic
eigenvalue equation for the normalized propagation constant
λ,λ2 − 2λ − 6 = 0, with solutions λ = 1 ±

√
7. As we will see

these two eigenvalues correspond to the two in-phase super-
modes DS01 and DS02 . From here, the eigenvectors [u0

a ,u0
b ] can

be readily deduced from the corresponding eigenvalue problem.
We next consider supermodes involving angular momentum.

In this respect, the modal fields in the outer ring vary according
to un = BeiλZ eiQn . In addition, we assume that the field in the
central element is zero (u0 = 0). In this case

i
dun

dZ
+ un+1 + un−1 = 0. (2.4)

Given that any solution of this latter equation must repeat
itself after six elements, (e.g., 6Q = 2lπ), then upon substitution
of un in Eq. (2.4) we deduce that

λ = 2 cos (Q) (2.5)

where Q = lπ/3 and the angular momentum index takes values
from the set l = 1, 2, . . . , 5. This eigenvalue relation (Eq. (2.5))
can now provide the remaining five supermodes DSl1 . Note
that for the form assumed,

∑6
n=1 un = 0 which is consistent

with the assumption that the DSlm fields are zero at the center
(u0 = 0) when l is finite. Fig. 1(b) illustrate the field profile of
the DS11 supermode.

This same principle can now be applied to other honeycomb
lattices having more rings. As a next example we consider a 19-
element honeycomb double ring structure as shown in Fig. 2(a).
Given the topology of this configuration, the elements involved
are now classified in four groups denoted as a, b, c, andd—
illustrated with different colors. As in the previous section,
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Fig. 3. Real part of the modal field distributions in a 19-core lattice, associated
with (a) the DS01 (b)DS02 (c) DS03 (d) DS04 supermodes.

because of the hexagonal geometry, all waveguides interact
only with their nearest neighbors with a coupling strength κ.
Higher order interactions are here ignored since the coupling
coefficient tends to exponentially decrease with distance. We
now look for in-phase supermodes with l = 0. In this situation,
the corresponding evolution equations for the modal fields, for
these four groups, read as follows:

i
d

dZ

⎡

⎢
⎢
⎢
⎢
⎣

ua

ub

uc

ud

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

0 6 0 0

1 2 1 2

0 1 0 2

0 2 2 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

ua

ub

uc

ud

⎤

⎥
⎥
⎥
⎥
⎦

= 0. (2.6)

Again, the in-phase eigenvalue problem can be obtained
using the eigenvectors ua,b,c,d = u0

a,b,c,de
iλZ from where we

find that λ4 − 15λ2 − 2λ3 + 24 = 0. The four roots of this
algebraic equation are given by [λ1 = 4.8715, λ2 = 1.2267,
λ3 = −1.6215, λ4 = −2.4767] and correspond to the DS01 ,
DS02 , DS03 and DS04 in-phase supermodes. Having found the
eigenvalues, the corresponding eigenvectors u0

a , u0
b , u0

c , u0
d can

be evaluated from the matrix of Eq. (2.6). Fig. 3 depicts the real
part of modal field profile of the DS0m supermodes. The re-
maining 15 modes are only possible if the angular momentum l
is finite. In this case again the field in the central element is zero
(ua = 0). In view of the b, c, and d groups assigned, Fig. 2(b)
suggests that

iu̇bn
+ ubn + 1 + ubn −1 + ucn

+ udn
+ udn −1 = 0 (2.7a)

iu̇cn
+ ubn

+ udn
+ udn −1 = 0 (2.7b)

iu̇dn
+ ubn

+ ubn + 1 + ucn
+ ucn + 1 = 0 (2.7c)

where u̇bn
= dubn

/dZ, etc. By employing the ansatz
[ubn

, ucn
, udn

] =
[
u0

bn
, u0

cn
, u0

dn

]
eiQneiλZ in equation (2.7),

we arrive at λ3 − 2λ2cos (Q) − λ [4 cos (Q) + 5] − 4 sin2

(Q) = 0. Again, periodicity demands that Q = lπ/3 where l
is 1, 2, . . . , 5. The three eigenvalues obtained from this cubic

Fig. 4. Real part of the modal field distributions in a 19-core lattice,
associated with supermodes having angular momenta (a) DS11 (b) DS21 and
(c) DS31 mode.

TABLE I
THE LIST OF EIGENVALUES OBTAINED FROM THE CUBIC EQUATION

FOR THE MODES WITH ANGULAR MOMENTUM

Q Eigenvalues

1 λ = 3.354, −0.476, −1.877

2 λ =
√

3, 1, −
√

3

3 λ = −1 +
√

2, 0, −1 −
√

2

4 λ =
√

3, 1, −
√

3

5 λ = 3.354, −0.476, −1.877

equation are tabulated in Table I for each angular momentum
l. In this way the remaining 15 supermodes can be generated
through the corresponding eigenvectors of the matrix of Eq.
(2.7). As an example, the real part of field profiles of modes
DS11 , DS21 and DS31 are shown in Fig. 4(a), (b), and (c).

Other variations of these hexagonal lattices can also be in-
vestigated using this method. For example let us consider again
the 19-site configuration when this time the central waveguide
is now completely removed. Using the same grouping outlined
above, the in-phase modes satisfy

i
d

dZ

⎡

⎢
⎢
⎣

ub

uc

ud

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

2 1 2

1 0 2

2 2 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ub

uc

ud

⎤

⎥
⎥
⎦ = 0 (2.8)

and hence the eigenvalue equation is given by λ3 − 2λ2 − 9λ =
0, having three roots λ = −2.1623, 0, 4.1623. One can show
that the remaining 15 modes (DSlm ) of this 18-site arrangement
are identical to those obtained for the 19-site lattice when l =
1, 2, . . . , 5.

As a final example, we investigate a 37 (three layer)
hexagonal lattice consisting of single-mode waveguides as
shown in Fig. 5(a). Because of their topology, the elements
are now grouped in seven families (a, b, c, d, e, f , and g) as
illustrated with different colors in Fig. 5(a). Assuming in-phase
modes, we find

i
d

dZ

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
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⎢
⎢
⎢⎢
⎢
⎣
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ub

uc

ud

ue

uf
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⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

+

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎣

0 6 0 0 0 0 0

1 2 1 2 0 0 0

0 1 0 2 1 1 1

0 2 2 0 0 1 1

0 0 1 0 0 1 1

0 0 1 1 1 0 1

0 0 1 1 1 1 0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎣

ua

ub

uc

ud

ue

uf

ug

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

= 0. (2.9)
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Fig. 5. (a) 37-core hexagonal lattice. The waveguide elements are now
grouped in seven different families (a, b, c, d, e, f, g) indicated with different
colors. (b) By excluding the central core, the remaining elements of these fam-
ilies are grouped in each hexagonal sector in order to obtain all the supermodes
with angular momenta.

Seven supermodes DS0m can then be obtained from the re-
sulting algebraic eigenvalue equation λ7 − 2λ6 − 23λ5 − 2λ4

+ 124λ3 + 164λ2 + 46λ − 12 = 0. The seven roots of this lat-
ter equation are given by λ = 5.3492, 2.9752, 0.1594,−0.9524,
−1.0000,−1.8567,−2.6748. As before, the remaining 30 su-
permodes exhibit angular momentum. These can be determined
from the field evolution equations

iu̇bn
+ ub

n + 1
+ ub

n −1

+ucn
+ udn

+ udn −1 = 0 (2.10a)

iu̇cn
+ ubn

+ udn
+ udn −1

+uen
+ ufn

+ ugn −1 = 0 (2.10b)

iu̇dn
+ ubn

+ ub
n + 1

+ ucn

+ucn + 1 + ufn
+ ugn

= 0 (2.10c)

iu̇en
+ ucn

+ ufn
+ ugn −1 = 0 (2.10d)

iu̇fn
+ ucn

+ udn
+ uen

+ ugn
= 0 (2.10e)

iu̇gn
+ ucn + 1 + udn

+ ufn
+ uen + 1 = 0. (2.10f)

By employing the ansatz uxn
= u0

xn
eiλZ eiQn we find

λ6 − 2λ5cos (Q) − λ4 (4 cos (Q) + 13) +

λ3 (4cos2 (Q) + 8cos (Q) − 14
)

+λ2 (16cos2 (Q) + 18cos (Q) + 18
)

+

λ
(
6 cos (2Q) + 20cos2 (Q) + 8 cos (Q) + 22

)
+

(
8 cos (2Q) + 8cos2 (Q) + 4 cos (Q)

−4 cos (2Q) cos (Q)) = 0 (2.11)

where Q = lπ/3 with l = 1, 2, . . . , 5. The 6 × 5 eigenvalues
of these DSlm supermodes (carrying angular momentum) can
be directly obtained from Eq. (2.11) along with their eigenvec-
tors. The real part of modal field profiles of the DS03 , DS04 ,
DS21 , DS23 , DS32 and DS35 is depicted in Fig. 6. Finally the
eigenvalue distributions and degeneracies of a 7-, 19-, 37-core
lattice are provided for comparison in Fig. 7. We would like to
note that in all cases our results (based on coupled-mode the-
ory) are in excellent agreement with finite element simulations

Fig. 6. Real part of the modal field distributions in a 37-core lattice, associated
with supermodes (a) DS03 (b) DS04 (c) DS21 (d) DS23 (e) DS32 (f) DS35 .

Fig. 7. Eigenvalue distribution diagrams for (a) a 7-core (b) 19-core and (c)
37-core hexagonal lattice.

based on weakly guiding structures. The method described here
can be used in a similar fashion to analyze any other multi-ring
hexagonal lattice. For example, in the case of a 61-core hexago-
nal lattice (involving four layers), the grouping of the elements
will lead to 11 in-phase DS0m supermodes (whose eigenvalues
are obtained from a 11th order polynomial) while 10 × 5 DSlm
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Fig. 8. Coupling between two arbitrarily oriented LP11 degenerate modes as a
function of their initial angles ϕ1 and ϕ2 . The arrow points to the position of zero
coupling κ(ϕ1 = 0, ϕ2 = π/2) = 0 between theLP11x andLP11y modes; the
inset shows the coordinate system of the two cores including reference axes and
two initial angles.

supermodes with angular momentum can result from a 10th
order polynomial involving Q = lπ/3where l = 1, 2, . . . , 5.

III. THEORY OF HIGHER-ORDER SUPERMODES

When the guiding power is increased for an isolated core,
it can guide high-order modes. For optical fibers with low re-
fractive index contrast, the vector modes are weakly guided and
therefore can be treated as linear polarization (LP) modes. In
essence, the LP modes are scalar approximations of the vector
mode fields and contain only one transverse field component
given by,

Epq (r, θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U
Jp(κpq · r)
Jp(κpq · a)

cos(pθ + ϕ), forr ≤ a

U
Kp(γpq · r)
Kp(γpq · a)

cos(pθ + ϕ), forr > a

(3.1)

where U is the complex amplitude, J and K are Bessel func-
tions of the first and second kind, a is the core radius, ϕ is an
arbitrary start angle, and p is a non-negative integer referred to
as the azimuthal mode order. For the same p value, κpq and γpq

can take on multiple discrete values determined from the dis-
persion relation. Therefore it is appropriate to label each of the
aforementioned terms with another non-negative integer corre-
sponding to the number of times the field crosses zero along
the radial direction. Thus, the LP modes can be labeled as
LPpq . The orthogonal field component is the same as Eq. (3.1)
therefore the results presented here applies to either polariza-
tion. According to Eq. (3.1), when p > 0, the modal field has
an additional degree of freedom in the azimuthal direction be-
cause the start angle ϕ is arbitrary, which generates spatially
orthogonal modes even if both p and q are the same. For ex-
ample the LP11x and LP11y modes correspond to the cases of
ϕ = 0 and ϕ = π/2, respectively, shown in Fig. 8. This is very
different from the case of p = 0 where the LP0q modal field is
azimuthally uniform and has no spatial degeneracy.

To the best of our knowledge, until now the study of super-
modes has been limited to the supermodes composed of these
azimuthally uniform LPpq (p = 0) “core modes,” particularly

LP01 supermodes. However, the higher-order LPpq (p > 0)
“core modes” can also form supermodes. Moreover, these super-
modes are strongly affected by the geometrical distribution of
the cores within the MCF, because the coupling of LPpq (p > 0)
modes between two cores varies significantly with initial angles
of the modes. We name these angle-dependent supermodes as
“higher-order supermodes.” Unlike the higher-order core modes
(p or p < 0), higher-order supermodes specifically refer to the
supermodes formed because of coupling among “core modes”
with p > 0. In this section, we begin the study of higher-order
supermodes from the simplest two-core structure by demon-
strating how angle-dependent coupling influences the eigen-
mode formation. Then, we extend the theory to more complex
geometrical structures, using symmetries to produce analyti-
cal formulas for higher-order supermodes. More specifically,
we derive formulas for commonly used formations, including
linear-array, grid-array and ring-array structures.

A. Higher-Order Supermodes in a Two-Core Structure

As described above, the coupling between two LPpq (p > 0)
modes strongly depends on the initial angles of both modes. In
order to focus on this angular dependence, the LPpq (p > 0)
modal field of Eq. (3.1) is written as a function of the initial
angle ϕ

E(ϕ) = Fr · cos(pθ − ϕ)

= Ex · cos ϕ + Ey · sin ϕ (3.2)

where Fr represents the radial component of the modal field,
Ex = E(ϕ = 0) and Ey = E(ϕ = π

2 ) correspond to the modal
fields aligned with the horizontal axis x and vertical axis y.
A coordinate system is selected where the azimuthal reference
axis is parallel to the edge of the graph formed by vertices at
the center of the isolated cores as shown in the inset of Fig. 8.
The coupling coefficient between two LPpq (p > 0) modal fields
with initial angles of ϕ1 and ϕ2 , respectively, in the two identical
cores 1 and 2 is given by

κ(E1(ϕ1), E2(ϕ2)) =
ω

2

∫∫

core2
ε0(n2

C oreB − n2
C lad)

·E∗
1(ϕ1) · E2(ϕ2)dxdy

= κx · cos ϕ1 cos ϕ2 + κy

· sin ϕ1 sin ϕ2 + · · ·κxy

· cos ϕ1 sin ϕ2 + κyx · sinϕ1 cos ϕ2

(3.3)

where κx = κ(E1,x , E2,x), κy = κ(E1,y , E2,y ), κxy =
κ(E1,x , E2,y ), κyx = κ(E1,y , E2,x). The modal fields are
normalized, ε0 and ω are vacuum permittivity and angular
frequency, nCore2 and nClad are the refractive indices of
core 2 and the cladding, respectively. Fig. 8 represents the
typical behavior of the coupling coefficient as the initial
angles of two LP11 modes change, according to Eq. (3.3).
κx > κy > 0 is observed as a result of the specific geometrical
distribution of modal fields with respect to the cores. More
importantly, coupling vanished for two specific initial angles,
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i.e., κxy = κyx = 0, as illustrated in by the arrow in Fig. 8. This
phenomenon occurs because the mirror-reversal of two modal
fields across an axis parallel to the reference axis should have
the same coupling coefficient, which can be mathematically
elaborated as

κxy =
ω

2

∫∫

core2
ε0(n2

CoreB − n2
Clad)

·F ∗
1,r cos(θ1) · F2,r sin(θ2)dxdy

=
ω

2

∫∫

Core2
ε0(n2

CoreB − n2
Clad)

·F ∗
1,r cos(−θ1) · F2,r sin(−θ2)dxdy

= −κyx = 0. (3.4)

With this result, Eq. (3.3) can be immediately simplified
as

κ(E1(ϕ1), E2(ϕ2)) = κχ · cos ϕ1 cos ϕ2

+ κy · sin ϕ1 sin ϕ2 . (3.5)

Similar to the LP01 supermodes, higher-order supermodes
can be investigated using coupled-mode theory under the as-
sumption of weak coupling. For the simplest case of the two-core
structure, the basis set for each core is strategically chosen as
the Ex and Ey pair, even though it could have been any orthog-
onal set with an arbitrary initial angle. Then the interactions
between the “core modes” can be described by the following
coupled-mode equation in a matrix form

i
d

dz
U + M̄U = 0, (3.6)

where U = [u1,x u2,x u1,y u2,y ]T ; um,x or um,y are the com-
plex amplitude of the horizontally or vertically aligned modal
field of the mth core after adopting the gauge transforma-
tion um,x/y = Um,x/y · eiβ0 z in which β0 is the propagation
constant of any isolated core mode LPpq ; and hence M̄ is a
4 × 4 coupled matrix

M̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 κx 0 κxy

κx 0 κxy 0

0 κyx 0 κy

κyx 0 κy 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.7)

The standard procedure of solving the coupled-mode equa-
tion is to diagonalize the coupled matrix Q−1M̄Q = Λ where
the eigenvalues λ give the normalized propagation constants of
the supermodes. The corresponding eigenvectors U ′ = Q−1U
describes the supermode field amplitudes and the row vectors
of A = Q−1 represents the amplitude coefficients of superposi-
tion of core modes in forming the supermodes. In the supermode
basis, the coupled-mode equation reduces to

i
d

dz
U ′ + ΛU ′ = 0. (3.8)

For this particular coupled-mode equation, one can apply
κxy = κyx = 0 first and then divide the equation into two

Fig. 9. Modal fields of LP01 supermodes (a and b) and LP11 supermodes
(c)–(f) of a basic two-core structure. In-phase supermodes are shown in (a), (c)
and (d) while out-of phase supermodes are shown in (b), (e) and (f).

Fig. 10. Modal fields ofLP01 supermodes (a)–(d) and LP11 supermodes (e)–
(l) of a 4-core linear-array structure.

reduced ones as follows:

i
d

dz

[
u1,x

u2,x

]

+

[
0 κx

κx 0

][
u1,x

u2,x

]

= 0 (3.9a)

i
d

dz

[
u1,y

u2,y

]

+

[
0 κy

κy 0

][
u1,y

u2,y

]

= 0. (3.9b)

The above equations mean that Ex and Ey , the horizontally
and vertically aligned “core modes” do not “talk to” each other
and their formation of higher-order supermodes can be solved
separately. Eqs. (3.9a) and (3.9b) turn out to be very similar to
those for the case of LP01 supermodes. The amplitude coeffi-
cients of the higher-order supermode corresponding to the row
vectors of A = Q−1 = 1√

2
[1, 1; 1,−1] are the same as those for

the LP01 supermodes. For higher-order supermodes composed
of Ex and Ey respectively, as shown in Fig. 9, the propagation
constants of the four higher-order supermodes β = β0 + λ are
calculated to be β0 ± 2κx and β0 ± 2κy , respectively.

B. Higher-Order Supermodes in Linear-Array Structures with
Translational Symmetry

A slightly more complex structure is the linear array where
the cores are linearly aligned with each other with equal core-
to-core distances as shown in Fig. 10. In this case, couplings
between non-adjacent cores are expected to be negligible. Let
us start with the LP01 supermodes, which do not have angular
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dependence. One could solve the eigen-problem of the coupled-
mode equation as described in the last section and obtain the
supermodes. The alternative method is to find the solutions
that satisfy the boundary conditions u0 = uN +1 = 0 [24]. As a
result, the amplitude of the mth core within any LP01 supermode
can be described as

Am = a · eimQ + b · e−imQ ,m = 1, 2, · · ·N (3.10)

where a and b are coefficients; Q is the common phase acquired
by shifting any one lattice due to the translational symmetry. The
boundary conditions applied to both sides of the linear structure
(m = 0 and m = N + 1)

AN +1 = a · ei(N +1)Q + b · e−i(N +1)Q

= A0 = a · ei0 + b · e−i0 = 0, (3.11)

yield a + b = 0 and Q = π l
N +1 , l = 1, 2, . . . N . Therefore the

LP01 supermode can be written as

u′
l,m = Al,m · ul,m = sin

(
πlm

N + 1

)
· ul,m ,m, l = 1, 2, · · ·N

(3.12)
where l corresponds to the order of different supermodes and um

represents the complex amplitude of the mth “core mode.” For
the lth LP01 supermode, comparing the coupled-mode equation

i
d

dz
um + κ(um−1 + um+1) = 0, (3.13)

with the supermode equation

i
d

dz
u′

m + λlu
′
m = 0 (3.14)

where κ is the coupling coefficient between two adjacent
LP01 “core modes,” the propagation constant of the lth LP01
supermode βl = β0 + λl can be obtained as

βl = β0 + 2κ · cos
(

πl

N + 1

)
, l = 1, 2 · · ·N. (3.15)

For higher-order supermodes, because only coupling between
adjacent cores is considered, Ex modes would only couple to
themselves as would Ey modes, according to κxy = κyx = 0.
Therefore the higher-order supermodes of the linear-array struc-
ture can be divided into the Ex - and Ey -families; each of them
can be solved independently using the same relations as used
for the LP01 supermode. The propagation constants are attained
as

βl,x = β0 + 2κx · cos
(

πl

N + 1

)
, l = 1, 2 · · ·N (3.16a)

βl,y = β0 + 2κy · cos
(

πl

N + 1

)
, l = 1, 2 · · ·N (3.16b)

respectively. An example of the LP11 supermodes as well as the
LP01 supermodes of a 4-core linear-array structure is shown in
Fig. 10.

C. Higher-Order Supermodes in 2D Rectangular-Array
Structures with Direct and Diagonal Coupling Interactions

We then analyze the supermodes in two dimensional (2D)
discrete waveguide arrays. These are composed of M × N

Fig. 11. (a) A rectangular array of waveguides. The LP01 mode in each
waveguide cross-talks with nearest neighbors along the horizontal and vertical
directions as well as with diagonal elements. (b) Coupling interactions in this
same array when each element involves instead the LP11 mode.

identical optical waveguides arranged in a rectangular geometry.
The distance between cores is taken here to be D. For gener-
ality, we also include in our analysis not only nearest neighbor
interactions κ (occurring along the horizontal and vertical di-
rections) but also higher-order couplings κc taking place along
the two diagonals as shown in Fig. 11(a). For weakly guid-
ing structures, the coupling strengths can be obtained from the
Eq. (2.1). We first consider supermodes derived from the LP01
mode supported by each waveguide channel in a square lattice
(see Fig. 11(a)). In such an arrangement, the modal fields evolve
according to [26]:

i
dUm,n

dz
+ β0Um,n + κ (Um+1,n + Um−1,n

+ Um,n+1 + Um,n−1) + κc (Um+1,n+1 + Um+1,n−1

+Um−1,n+1 + Um−1,n−1) = 0 (3.17)

where Un,m represents the modal field amplitude at site n, m
in this rectangular array and the discrete site indices take values
from the sets n = 1, 2, . . . , N and m = 1, 2, . . . ,M . To identify
the eigenmodes of this system, we look for solutions of the type
Um,n = eiβ0 z um,n that also satisfy the boundary conditions
um,0 = um,N +1 = u0,n = uM +1,n = 0 [27]. Based on these
requirements, one can directly show that the Uk,l supermodes of
this structure are Uk,l

m,n = Ak,l
m,neiβ0 z eiλk , l z with the amplitudes

given by

Ak,l
m,n = sin

(
m

kπ

M + 1

)
sin
(

n
lπ

N + 1

)
(3.18)

where k = 1, 2, . . . ,M and l = 1, . . . , N . In addition, the eigen-
value associated with Uk,l supermode is given by

λk,l = 2κ

[
cos
(

kπ

M + 1

)
+ cos

(
lπ

N + 1

)]
+

4κc cos
(

kπ

M + 1

)
cos
(

lπ

N + 1

)
. (3.19)

Evidently, altogether this array supports M × N supermodes.
Similarly, one can investigate the eigenmodes of this same array
arising from the LP11 mode of each waveguide (see Fig. 11(b)).
In a weakly coupled array, the LP11 mode tends to orient it-
self either along the x or y direction (LP11x , LP11y ). As a
result the coupling strengths κx and κy are different because of
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Fig. 12. (a) Scheme of mode basis selection for LP11 supermode analysis of a
4-core grid-array structure; modal fields of LP01 supermodes (a)–(d) and LP11
supermodes (e)–(l) of a 4-core grid-array structure computed using COMSOL.

their respective overlap integrals. Hence, the field evolution is
described by

i
dUm,n

dz
+ β0Um,n + κx (Um+1,n + Um−1,n )

+κy (Um,n+1 + Um,n−1) +

κc (Um+1,n+1 + Um+1,n−1 + Um−1,n+1 + Um−1,n−1) = 0.

(3.20)

The supermodes Uk,l of this latter equation are exactly iden-
tical in form with those provided by Eq. (3.18). In this case
however, the corresponding eigenvalues are given by

λk,l = 2κx cos
(

kπ

M + 1

)
+ 2κy cos

(
lπ

N + 1

)

+4κc cos
(

kπ

M + 1

)
cos
(

lπ

N + 1

)
. (3.21)

In all cases our results (based on coupled-mode theory) are
in excellent agreement with finite element simulations using
COMSOL as shown in Fig. 12.

D. Higher-Order Supermodes in Ring-Array Structures with
Rotational Symmetry

Ring-array structure is another interesting geometry for
higher-order supermodes as it possesses rotational symmetry.
Here also, we only consider coupling between adjacent cores.
We start from LP01supermodes of N-core ring-array structure.
In this case, the coupled matrix M̄ is a symmetric circulant ma-
trix. If β0 and κ are defined as the propagation constant of the
“core mode” and the coupling coefficient between two adjacent
LP01 “core modes” respectively, the elements of the N × N
coupled matrix are given as

(M̄)lm = β0δlm + κ (δl+1,m + δl,m+1) (3.22)

where δlm , δl+1,m and δl,m+1 are Kronecker deltas; l and m
are integer numbers mod N . This matrix can be diagonalized
by a lattice Fourier transform as Λ = Q−1M̄Q [5]. Q−1 is a
unitary matrix with elements given as

(Q−1)lm =
1√
N

ei 2 π l
N ·m (3.23)

which represents the amplitude of mth core for the lth LP01
supermode. These discrete helical phases give supermodes an
appearance similar to optical vortices but in a discrete form
and thus carry orbital angular momentum [4]. The propagation
constant of the lth LP01 supermode equals the corresponding
eigenvalue and can be calculated as

βl = β0 + 2κ · cos
(

2πl

N

)
, l = 1, 2 · · ·N. (3.24)

According to Eq. (3.24), it is obvious that the lth and
(N − l)th supermodes are degenerate modes. This has a phys-
ical explanation from the equivalence between clockwise and
counter-clockwise mode orders. A unitary transformation can
project the vortex-like basis of the lth and (N − l)th super-
modes into another orthogonal basis. In particular, the degen-
erate supermodes can be transformed into a basis in real fields
with amplitude transformation as below

[
Bl,m

BN −l,m

]

=
1√
2

[
1 1

1 −1

][
Al,m

AN −l,m

]

(3.25)

where Bl,m =
√

2
N cos

( 2π l
N · m

)
and BN −l,m =

√
2
N sin

( 2π l
N · m

)
.

The higher-order supermodes of ring-array structure are par-
ticularly interesting because they can no longer be divided into
Ex - and Ey -basis for independent analysis. Instead, the tan-
gential and normal mode basis Etm

and Enm
(m refers to the

core number) are selected, which correspond to “core modes”
aligned horizontally or vertically with respect to the reference
axis pointing from the ring center to the mth core. Fig. 13(a)
shows such a mode basis for a 3-core ring-array structure. In that
case, κ1,2 = κ2,3 = κ3,1 is obtained because of the rotational
symmetry. In addition, the coupling coefficients between the
LPpq modes are real so that κi,j = κj,i . Therefore the number
of coupling coefficients for the N-core ring-array structure is
reduced from 2N to 4 given by

κt1 ,t2 = −κx sin2
( π

N

)
+ κy cos2

( π

N

)
, (3.26a)

κt1 ,n2 = −κx sin
( π

N

)
cos
( π

N

)
− κy sin

( π

N

)
cos
( π

N

)
,

(3.26b)

κn1 ,t2 = κx sin
( π

N

)
cos
( π

N

)
+ κy sin

( π

N

)
cos
( π

N

)
,

(3.26c)

κn1 ,n2 = κx cos2
( π

N

)
− κy sin2

( π

N

)
. (3.26d)
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Fig. 13. (a) Scheme of mode basis selection for LP11 supermode analysis of a
3-core ring-array structure; modal fields of LP01 supermodes (b)–(d) and LP11
supermodes (e)–(j) of a 3-core ring-array structure computed using COMSOL.

Then the coupled-mode equation for the N-core ring-array
can be written as

i
d

dz

[
U t

Un

]

+ M̄

[
U t

Un

]

= 0, (3.27)

where U t and Un are column vectors of dimension N. the
coupled matrix

M̄ =

[
M tt M tn

Mnt Mnn

]

is a rank-2N Hermitian matrix and each sub-matrix is a circulant
matrix with elements described as

(M tt)lm = κt1 ,t2 (δl+1,m + δl,m+1) , (3.28a)

(M tn )lm = κt1 ,n2 δl+1,m + κn1 ,t2 δl,m+1 , (3.28b)

(Mnt)lm = κn1 ,t2 δl+1,m + κt1 ,n2 δl,m+1 , (3.28c)

(Mnn )lm = κn1 ,n2 · (δl,m+1 + δl+1,m ) . (3.28d)

Fig. 14. (a) Schematic of spatially-and-spectrally-resolved imaging (S2 imag-
ing) setup using a tunable laser and a CCD camera; (b) wavelength-scanning
results of the multi-path interference pattern for one pixel of the CCD camera
and (c) the result of intensity vs. differential group delay (DGD) after taking
Fourier transform of (b) for the same pixel. Inset of (c) shows the resolved LP
modes after picking the information for every pixel at the corresponding DGDs
of different modes and mapping them together.

where δlm , δl+1,m and δl,m+1 are the Kronecker deltas; l
and m are integer numbers mod N. Diagonalization of the
coupled matrix M is the key to solving the higher-order
supermodes. It takes two steps as follows as described in
appendix A.

Both the eigenvalues and eigenvectors can be obtained after
successful diagonalization of the coupled matrix. After plugging
the coupling coefficients into the eigenvalues and eigenvectors
using Eq. (3.22), the higher-order supermodes can be divided
into (±) groups and solved as Eq. (3.29), shown at the bottom
of the page, where

γ
(±)
l = −i

(
η ±

√
1 + η2

)

and

η =
(κx − κy ) cot

( 2π l
N

)

(κx + κy ) sin
( 2π l

N

) .

The propagation constants of the higher-order supermodes are
the eigenvalues

β
(±)
l

= β0 + (κx + κy ) · cos
(

2π

N

)
· cos
(

2πl

N

)
± . . .

√
(κx − κy )2 · cos2

(
2πl

N

)
+ (κx + κy )2 · sin2

(
2π

N

)
· sin2

(
2πl

N

)
,

(3.30)

where l = 1, 2 · · ·N . Same as the LP01supermodes, the lth
and (N − l)th higher-order supermodes for both (±) groups

E
(±)
l =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N∑

m=1

⎛

⎝e
i
2πl

N
· m

Etm

⎞

⎠+ γ
(±)
l ·

N∑

m=1

⎛

⎝e
i
2πl

N
· m

Enm

⎞

⎠, if sin
(

2πl

N

)
�= 0

N∑

m=1

⎛

⎝e
i
2πl

N
· m

Etm

⎞

⎠or
N∑

m=1

⎛

⎝e
i
2πl

N
· m

Enm

⎞

⎠ , if sin
(

2πl

N

)
= 0

(3.29)
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Fig. 15. (a) Cross-sectional view of the fabricated coupled-3-core fiber and
(b)–(j) resolved supermodes of the fabricated coupled-3-core fiber shown in
amplitude (x1 ) and phase (x2 ): (b) the fundamental LP01 supermode; (c), (d)
the degenerate pair of LP01 supermodes; (d) the fundamental LP11 supermode;
(e), (f) the first degenerate pair of LP11 supermodes; (g) the fourth LP11
supermode; (h), (i) the second degenerate pair of LP11 supermodes.

are degenerate. Real-field basis can be obtained by applying a
unitary transformation on the current basis. An example of the
LP11supermodes as well as the LP01-supermodes of a 3-core
ring-array structure is shown in Fig. 13(b)–(j).

IV. OBSERVATION OF HIGHER-ORDER SUPERMODES

A coupled few-mode 3-core fiber was fabricated in order
to observe higher-order supermodes. The cross-section of the
fiber is shown in Fig. 15(a), where the Ge-doped cores are
hexagonally-shaped as a result of the stack-and-draw fabrication
process. The cladding diameter is ∼120 μm, and the index
difference between the core and cladding is ∼0.6%. The core
diameter was selected to be ∼9 μm to ensure that the cut-off
wavelength of the fundamental modes is well above 1.5 μm.
In addition, the core pitch was chosen to be ∼11.5 μm, a small
enough distance to allow for strong coupling. Therefore the fiber
supports both LP01 and LP11 supermodes around 1.5 μm.

A spectrally-and-spatially resolved imaging (S2 imaging)
setup was built to acquire the modal fields from the fiber. The
S2 imaging procedure, first developed by Nicholson et al. [28],
is a technique specially designed for quantifying mode content
in fibers. The principle is to spatially resolve, in a point-by-
point fashion, the spectral multi-path interference patterns pro-
duced by mode beatings. The imaging setup can either involve
a broadband source accompanied by a spatial-scanning system
or a tunable laser source accompanied by a CCD camera. For
the purposes of this experiment, we chose the latter setup as
shown in Fig. 14(a) due to its fast scanning speed and high fre-
quency resolution. Both the tunable laser and the camera scan in
sub-seconds and can be easily synchronized by computer con-
trol. In addition, the tunable laser supports a fine resolution of
0.0001 nm with a tuning range of 1510–1640 nm. Light coupled
from the tunable laser source was launched into approximately
7 m of the fabricated 3-core fiber through free space. The out-
put of the 3-core fiber is imaged onto the camera through a 4-f

optical system. A polarizer was added in front of the camera to
guarantee a single polarization. During the scanning operation,
the laser wavelength was incremented in discrete steps and a
mode-interference image was captured by the camera at each
step. The measured S2 results can be expressed as wavelength-
interference patterns for every image pixel. An arbitrary exci-
tation can be decomposed into different fiber modes, including
the lossy modes which attenuate quickly after a few meters or
gentle bends. Because modes travel at different group velocities,
if three guided modes are assumed to be excited with amplitudes
A, B, C and phase φa , φb , φc , the measured intensity at each
pixel location (x, y) would be

I(ω)
∣
∣
(x,y ) = |A(x, y) · eiφa (x,y ) · e−iω ·0

+ B(x, y) · eiφb (x,y ) · e−iω ·τa b

+ C(x, y) · eiφc (x,y ) · e−iω ·τa c |
= (A2 + B2 + C2) + 2AB

· cos(Δφab − ω · τab)

+ 2AC · cos(Δφac − ω · τac)

+ 2BC · cos(Δφbc − ω · τbc), (4.1)

where ω is the angular frequency and τij represents the differ-
ential group delay between mode i and mode j. An example of
a measurement at a particular pixel location is plotted as shown
in Fig. 14(b). Using that data, one can extract all the mode
information by simply applying a Fourier transform as follows:

Î(τ )
∣
∣(x,y ) = (A2 + B2 + C2 ) · δ(τ ) + ...

AB ·
[
eiΔ φa b · δ(τ + τab ) + e−iΔ φa b · δ(τ − τab )

]

+ AC ·
[
eiΔ φa c · δ(τ + τac )+e−iΔ φa c · δ(τ − τac )

]

+ BC ·
[
eiΔ φ b c · δ(τ + τbc )+e−iΔ φ b c · δ(τ − τbc )

]
.

(4.2)

Fig. 14(c) represents the same pixel location after Fourier
transform, where every peak corresponds to each mode beating.
Therefore, the amplitude, phase, and group delay of the modes
can be resolved from the peak strength, phase and locations.
Using this method, each mode profile can be extracted from the
series of images by performing the Fourier transform on each
pixel as shown in the inset of Fig. 14(c).

All the supermodes of the 3-core fiber were obtained using
the S2 imaging method. One difficulty of the experiment is that
the mode identification became very complicated due to the
large number of fiber modes. Since every peak is the result of
the beating of any two modes, the number of the mode-beating
peaks scales quadratically with the number of modes. In this
experiment, the problem was solved by using intentional off-
set launching to excite only one dominant mode with a few
other modes for each wavelength sweep. Then, multiple excita-
tions were required in order to resolve different modes. Notice
that the offset excitation method is selected here for simplicity,
while lower loss or more accurate excitation can be achieved by
using photonic lanterns [13], [29] or spatial light modulators.
S2 imaging also suffers from the inherent inability to separate
degenerate modes, which share same group delays. However,
due to the hexagonal shape of the cores in this 3-core fiber,
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the degenerate modes actually have a subtle difference in group
delay, making it possible to reconstruct each of them separately.
Therefore, a total of nine modes supported by the 3-core fiber
were successfully reconstructed in both amplitude and phase,
as shown in Fig. 15. The first three images are of LP01 su-
permodes, in which the field is slightly better resolved than in
those of the LP11supermodes. This is because significantly less
power is coupled into the higher-order modes during center or
offset excitation. The degenerate higher-order mode images are
slightly blurry because their group delay difference is too small
to allow them to be clearly differentiated. Nevertheless, the re-
solved fiber modes are in good agreement with the simulations
shown in Fig. 15.

V. CONCLUSION

We have investigated supermodes in different waveguide ar-
ray structures based on the weakly-coupled assumption. For
coupled single-mode multi-core waveguides, supermodes in
multi-ring honeycomb arrangements, which provide the highest
mode density per unit cross-sectional area, have been obtained.
For coupled few-mode multi-core waveguides, higher-order su-
permodes have been analyzed for the linear arrays, square lat-
tices and ring arrays. General solutions of LPpq supermodes
in those structures of arbitrary sizes are provided. In addition,
an experimental observation of higher-order supermodes has
been achieved for the first time in a coupled few-mode 3-
core fiber. This study enriches the concept of supermodes in
coupled multi-core waveguides, which may have potential ap-
plications not only in MDM systems [9, 11, 30], but also in
other areas related to waveguide optics, such as optical phased
arrays [31, 32], beam combining [33, 34] and fiber imaging
systems [35, 36].

APPENDIX A

In order to solve the higher-order supermodes for ring-array
structure, diagonalization of the coupled matrix M is the key. It
takes two steps as follows. Because each sub-matrix of M has
the similar form as the coupled matrix of LP01 supermodes, the
first step is to utilize the previous solution and diagonalize the
sub-matrixes all together. In order to do so, a rank-2N modal
matrix is defined as

P =

[
Q 0N

0N Q

]

, (A1)

where 0N is a N × N null matrix and (Q)lm = 1√
N

e−i 2 π l
N ·m according to Eq. (3.25). P then transforms M into

a block matrix composed of diagonal sub-matrixes as below

D = P−1MP =

[
Q−1M ttQ Q−1M tnQ

Q−1MntQ Q−1MnnQ

]

=

[
Dtt Dtn

Dnt Dnn

]

, (A2)

where all the diagonal elements can be calculated

(Dtt)l,l = 2κt1 ,t2 · cos
(

2πl

N

)
, (A3)

(Dtn )l,l = 2iκt1 ,n2 · sin
(

2πl

N

)
, (A4)

(Dnt)l,l = −2iκt1 ,n2 · sin
(

2πl

N

)
, (A5)

(Dnn )l,l = 2κn1 ,n2 · cos
(

2πl

N

)
, l = 1, 2 · · ·N. (A6)

D is a block matrix composed of four diagonal N × N
sub-matrixes, which are commutable with each other. Notice
that if (Dtn )l= l0

= (Dnt)l= l0
= 0, then (Dtt)l= l0

= 2κt1 ,t2 ·
cos
( 2π l0

N

)
and (Dnn )l= l0

= 2κn1 ,n2 · cos
( 2π l0

N

)
are eigenval-

ues already. In addition, a function of a diagonal matrix is still
a diagonal matrix, whose elements are the same function of the
original matrix elements, i.e., f (D)lm = f ((D)ml)[5]. With
these properties, the second step of diagonalization can be op-

erated on D similar to a simple 2 × 2 matrix of

[
a b
c d

]

Λ = R−1DR. (A7)

The eigenvalue matrix is solved as

Λ =

[ 1
2 (Dtt + Dnn + DR ) 0N

0N
1
2 (Dtt + Dnn − DR )

]

(A8)
and the modal matrix is

R =

[
Dtt − Dnn + DR Dtt − Dnn − DR

2Dnt 2Dnt

]

, (A9)

in which DR =
√

(Dtt − Dnn )2 + 4DtnDntwhen (Dtn )l,l

�= 0. Therefore the higher-order supermodes are the row vec-

tors of the matrix R−1P−1 where P−1 = P ∗ =
[

Q∗ 0N

0N Q∗

]
and

R−1 =
[

2Dnt DR − (Dtt − Dnn )
−2Dnt DR + (Dtt − Dnn )

]
.
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